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Abstract

Due to transmission delays, the perceptual information our
brain can access quickly becomes outdated as events unfold
in real-time. We suggest our perceptual system learns in-
ternal representations that encode sequences (or timelines)
rather than single points to compensate for transmission de-
lays. Specifically, we investigate the dynamic predictive cod-
ing (DPC) model in which high-level states predict the transi-
tion dynamics of lower-level states and represent lower-level
state sequences. We show that a two-level DPC network
trained to predict videos captures several aspects of the well-
known flash-lag illusion and exhibits both predictive and post-
dictive effects resembling those observed in human visual mo-
tion processing. Our results support the view that visual per-
ception relies on temporally abstracted representations that en-
code sequences (or timelines) rather than single time points.
Keywords: visual perception; predictive processing; flash-lag
illusion; postdiction; apparent motion

Introduction
Sensory systems enable us to perceive and interact with a
highly dynamic world in real time. Yet, biological constraints
like neural processing delays deny us access to the physi-
cal present. How does the nervous system compensate for
these delays and create a multisensory percept that synchro-
nizes with the world? Our ability to predict future stimuli
and event outcomes seems crucial in solving this problem.
Indeed, predictive representations of upcoming stimuli have
been found in various open and closed-loop paradigms where
animals developed experience-dependent visual and auditory
expectations (Xu, Jiang, Poo, & Dan, 2012; Keller, Bonho-
effer, & Hübener, 2012; Gavornik & Bear, 2014; Fiser et al.,
2016; Schneider, Sundararajan, & Mooney, 2018). Trajec-
tory extrapolation (prediction) has also been suspected to un-
derlie many visual motion processing phenomena observed in
psychophysical studies (Nijhawan, 1994, 2008; Hogendoorn,
2020; Lotter, Kreiman, & Cox, 2020).

However, predictive mechanisms alone fail to explain
many reports that perception of earlier sensory information
(in a sequence) can sometimes be altered by stimuli that ar-
rive later (Shimojo, 2014). This phenomenon, referred to
as “postdiction”, challenges the intuitive view that percep-
tion strictly follows the order of sensory events. For in-
stance, Eagleman & Sejnowski showed that in the classic
flash-lag illusion experiment (Nijhawan, 1994), the direction
of the moving object after the flash could change the direc-
tion of the perceived displacement of the flash (Eagleman
& Sejnowski, 2000). Others have shown that when future

events deviate from expectation, predictive and postdictive ef-
fects dominate apparent motion perception at different laten-
cies (Hogendoorn, Carlson, & Verstraten, 2008; Blom, Feuer-
riegel, Johnson, Bode, & Hogendoorn, 2020; Blom, Bode, &
Hogendoorn, 2021). The neural mechanism through which
new sensory information is incorporated to edit earlier per-
cepts remains unclear.

Here, we adopt the hypothesis that our perceptual sys-
tem encodes entire sequences rather than single points at any
given time (Hogendoorn, 2022). Such a sequence represen-
tation allows the system to predict the expected perceptual
trajectory, compensating for transmission delays. When fu-
ture events deviate from this expectation, the system retroac-
tively updates its sequence representation and catches up with
new observations. We hypothesize that dynamical illusions
such as the flash-lag effect and apparent motion could be ex-
plained by these editable “timeline” representations the per-
ceptual system forms.

To test this hypothesis, we studied a neural model called
dynamic predictive coding (DPC) which learns hierarchi-
cal representations of sequences (Jiang, Gklezakos, & Rao,
2021). In the DPC formulation, lower-level states predict
both the current sensory input and the next state, while a
higher-level state predicts the transition dynamics between
lower-level states. This enables higher-level states to pre-
dict entire sequences of lower-level states following the same
dynamics. We demonstrate that a two-level DPC network
trained to predict image sequences naturally exhibits the
flash-lag effect under different testing conditions (Eagleman
& Sejnowski, 2000). Moreover, the sequence prediction and
error correction process of DPC explain the observed inter-
play between prediction and postdiction in apparent motion
perception (Hogendoorn et al., 2008). Taken together, these
results support the view that visual perception relies on tem-
porally abstracted representations that encode sequences (or
timelines) rather than single points, naturally leading to pre-
dictive and postdictive effects in visual perception.

Dynamic Predictive Coding
The DPC model assumes that spatiotemporal inputs are gen-
erated by a hierarchical generative model (Figure 1a). The
lower level of the model follows the traditional predictive
coding model in generating images using a set of spatial fil-
ters U and a latent state vector rt , which is sparse (Olshausen
& Field, 1996), for each time step t: It = Urt + n where n
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Figure 1: Dynamic predictive coding. (a) Generative model for dynamic predictive coding. (b) Parameterization of the
model. The higher-level state modulates the lower-level transition matrices through a top-down network Hθ. (c) Depiction of
an inference step when the lower-level dynamics changes. The resulting large prediction errors drive updates to the higher-level
state to account for the new lower-level dynamics. (d) Inference in a trained network for an example input sequence from the
Moving MNIST dataset. The red dashed boxes mark the time steps when the dynamics of the input changed. (e) The network’s
responses to the input Moving MNIST sequence in (d). Note the changes in the higher-level responses after the input dynamics
changed (red dashed boxes); this gradient-based change helps to minimize prediction errors.

is zero mean Gaussian white noise. The temporal dynamics
of the state rt is modeled using K learnable transition matri-
ces V= {V(1), . . . ,V(K)} which can be linearly combined us-
ing a set of “modulation” weights given by a K-dimensional
mixture vector w. This vector of weights is generated by the
higher-level state vector rh using a function Hθ (Figure 1b),
implemented as a neural network:

w = Hθ(rh) (1)

V =
K

∑
k=1

wkV(k). (2)

Here, wk is the kth component of the vector w. The lower-
level state vector at time t+1 is generated as rt+1 = f (Vrt)+
m where m is zero mean Gaussian white noise and f is a
nonlinearity function (ReLU in our case).

Inference and Learning
When an input sequence is presented, the model employs a
Bayesian filtering approach to perform online inference on

the latent vectors by minimizing a loss function that includes
prediction errors and penalties from prior distributions over
the latent variables:

Lt(rt ,rh,U,V,θ) :=
1

2σ2 ∥It −Urt∥2
2 +

1
2σ2

r
∥rt − f (Vr̂t−1)∥2

2 +λ∥rt∥1 +λh∥rh∥2
2,

(3)

where σ2 is the image noise variance, σ2
r is the latent noise

variance, λ is the sparsity penalty for rt , and λh is the prior
penalty for rh. r̂t−1 and rh are the optimal lower- and higher-
level estimates from the previous step, respectively. The op-
timal estimates for the current step t are then

r̂t = argmin
rt

Lt(rt ,rh,U,V,θ) (4)

r̂h = argmin
rh

Lt(rt ,rh,U,V,θ). (5)

After inferring rt for the whole sequence, the parameters are
learned by gradient descent on the sum of loss functions from



all steps:

L(U,V,θ) :=
T

∑
t=1

Lt(r̂t , r̂h,U,V,θ), (6)

where T is the sequence length.
Figure 1c illustrates the inference process for both levels

of the network. The network generates top-down and lat-
eral predictions (green) using the current two-level state es-
timates (blue). If the input sequence is predicted well by the
top-down-modulated transition matrix V, the higher-level re-
sponse rh remains stable due to small prediction errors. When
a non-smooth transition occurs in the input sequence, the
resulting large prediction errors are sent to the higher level
via feedforward connections (red arrows, Figure 1c), driving
changes in rh to predict new dynamics for the lower level.

Dataset and Hyperparameters
We trained a two-level DPC network on the Moving MNIST
dataset (Srivastava, Mansimov, & Salakhudinov, 2015). We
used 10,000 image sequences (image size: 18 × 18 pixels,
sequence length: T = 10 frames), each sequence containing
a fixed digit moving in a particular direction. The motion
of the digits was restricted to upward, downward, leftward,
or rightward directions. When a digit hit the boundary, its
motion direction was inverted (leftward to rightward, upward
to downward, and vice versa). 9,000 sequences were used
to train the model and the remaining 1,000 were reserved for
testing.

The DPC network consisted of 648 first-level neurons, 20
second-level neurons, and K = 5 first-level transition matri-
ces. The top-down network Hθ was a one-hidden-layer mul-
tilayer perceptron with 10 hidden units, a LayerNorm layer
(Ba, Kiros, & Hinton, 2016) and an ELU activation function
(Clevert, Unterthiner, & Hochreiter, 2016). The training pro-
cess lasted 100 epochs and we used the model weights at the
last epoch for the following simulations.

Hierarchical Sequence Representations
To use the trained DPC network for testing our hypothesis,
we need to first confirm that higher-level states of the net-
work have developed hierarchical representations that encode
entire sequences. Figure 1d illustrates the trained network’s
inference process on an example image sequence in the test
set. As seen in Figure 1e, the lower-level responses dis-
played fast changes while the higher-level responses spanned
a longer timescale and showed greater stability. Note that at
time t = 4 and t = 8, the input dynamics changed as the digit
“bounced” against the boundaries and started to move in the
opposite motion (Figure 1d red dashed box), inducing large
prediction errors at those times (Figure 1d third row). These
errors caused notable changes in the higher-level responses
rh (Figure 1e red dashed boxes). For the rest of the steps, rh

remained stable and generated accurate predictions of the sta-
ble dynamics, coding for the entire leftward or rightward se-
quences. These results show that the second-level DPC neu-

rons learned more temporally abstract representations that en-
code entire sequences of lower-level activities following the
same transition dynamics.

In the following sections, we show that the ability of
the DPC model to encode entire sequences at the higher
level (c.f . the “timeline” model of perception (Hogendoorn,
2022)) leads to new normative and computational interpre-
tations of visual motion phenomena such as the flash-lag il-
lusion (Nijhawan, 1994; Eagleman & Sejnowski, 2000; Ni-
jhawan, 2008), explaining both predictive and postdictive ef-
fects (Hogendoorn et al., 2008; Hogendoorn, 2022). The
flash-lag illusion refers to the phenomenon that a flashed, in-
termittent object is perceived to be “lagged” behind the per-
cept of a continuously moving object even though the phys-
ical locations of the two objects are aligned or the same
(Nijhawan, 1994, 2008). Though this illusion is commonly
attributed to the predictive nature of the perceptual system
(Nijhawan, 1994), Eagleman and Sejnowski (2000) proposed
a postdictive mechanism based on psychophysical results that
the motion of the moving object after the flash can change the
percept of events at the time of the flash.

We propose that prediction error minimization with a hier-
archical temporal representation, as in the DPC model, pro-
vides a natural explanation for these predictive and postdic-
tive effects. In a DPC network, the higher-level state rh

predicts entire sequences of lower-level states following the
same dynamics (Figure 1a,c)). When the dynamics of obser-
vations change (e.g., motion reversal), the higher-level state is
updated to minimize prediction errors, resulting in a revised
state that represents the motion-reversed sequence spanning
both past and future inputs. This process corresponds to post-
diction in visual processing (Shimojo, 2014). For the flash-
lag experiment, we predict that the higher-level neurons of
a trained DPC network will form a static sequence percept
when presented with a flashed object and a directional se-
quence percept for a moving object, causing perceived lags
between the two objects as observed in the flash-lag illusion
(Nijhawan, 1994).

Prediction versus Postdiction in the
Flash-Lag Illusion

We first test these predictions of the DPC model on the exper-
imental conditions used by Eagleman and Sejnowski (2000).
In their experiment, the stimuli consisted of a flashed disk and
a ring moving in a circle. Before the flash, the ring could have
an initial trajectory (Figure 2a, top) or no initial trajectory
(Figure 2a, bottom). After the flash, the ring could continue
moving on its initial trajectory (“continuous”), stop moving
(“stopped”), or move on the reversed trajectory (“reversed”).
A flash appeared in a seven-degree range that extended above
and below the ring on its trajectory. The participants then in-
dicated whether a flashed white disk occurred above or below
the center of the moving ring. Positive displacements denoted
lags along the initial trajectory of the ring, while negative dis-
placements denoted the reversed direction.
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Figure 2: Flash-lag testing conditions. (a) The testing conditions used by Eagleman and Sejnowski (2000). The moving ring
could have an initial trajectory (top) or no trajectory (bottom). At the time of the flash (bright disk), the ring could move along
the initial trajectory, stop, or reverse its trajectory. Adapted from Eagleman and Sejnowski (2000). (b) Two test conditions (left)
regarding initial trajectories of the moving object (a digit) in the flash-lag experiment with the model, and four test conditions
(right) for the moving object. The flashed object was shown at time t and turned off at time t + 1 (same as the “Terminate”
condition).

Simulation
To simulate these testing conditions, we used the Moving
MNIST test set and extracted 134 test sequences with con-
sistent leftward or rightward motion. For each of these 134
sequences, we simulated the two test conditions, namely, with
or without initial trajectory: the higher-level state r̂h was ei-
ther inferred from the first three steps (t = 0,1,2) of the input
sequence, or initialized to the zero vector (Figure 3(a) left).
For each of these two test conditions, we simulated the three
test cases regarding the motion of the moving object at the
time of the flash (Figure 3(a) right) and an additional “Termi-
nate” case used by Nijhawan (2008). Note that flashed stimuli
correspond to the “no initial trajectory, terminate” condition
since the model has no belief about the dynamics (rh is a zero
vector) and the stimuli only appear for one frame.

We computed the location of a digit as the center of mass
of pixel values in the 2D image; the perceived location at time
t was defined similarly based on the predicted image Īt :

w̄ = Hθ(r̂h) (7)

V̄ =
K

∑
k=1

w̄kV(k) (8)

Īt = U
(
ReLU

(
V̄r̂t−1

))
. (9)

Here, r̂h is the optimal higher-level estimate at t − 1 (Equa-
tion 5) , and r̂t−1 is the optimal lower-level estimate at t − 1
(Equation 4). We computed the location of the percept as the
center of mass of the percept image Ī. The displacement in
percept between the moving object and the flashed object was
calculated asC

(
Īmoving

t

)
−C

(
Īflash

t
)

if rightward motion

C
(
Īflash

t
)
−C

(
Īmoving

t

)
if leftward motion

, (10)

where C(I) returns the horizontal location of the center of
mass of I. Therefore, a positive displacement is along the
original trajectory of the moving object, while a negative dis-
placement is along the reversed trajectory.

Results
First, we investigate the model’s perception of the flashed ob-
ject (“no initial trajectory, terminate” case1). As Figure 3(c)
shows, the perceived location of a flashed object at t = 3 (Ī3)
strongly overlapped with the physical flashed location at t = 2
(I2), showing that the prediction errors (induced by the disap-
pearance of the digit) drove the higher-level state estimates
to predict no change in object location for the flashed ob-
ject. Figure 3(d) shows the perceived displacement between
the moving object (with initial trajectories) and the flashed
object, computed as the difference in perceived locations at
t = 3 between the moving object (Īmoving

3 ) and the flashed
object (Īflash

3 ). The perceived displacements in the model
(Figure 3(d)) were similar to the psychophysical reports by
Eagleman and Sejnowski (2000) in all three test conditions
(Figure 3(a)). The perceived displacements in the terminate
case were similar to the stopped case (with much less vari-
ance), similar to the report by Nijhawan (2008). Figure 3(e)
confirms that the initial trajectories of the moving object had
no effects on the model’s flash-lag illusion, consistent with
the reported results (Figure 3(b)) (Eagleman & Sejnowski,
2000).

These results validate the explanation provided by the DPC
model on the flash-lag effect: For a hierarchical genera-
tive model with representations of sequences, inference on
a flashed object or a stopped/terminated moving object leads
to a belief of a static object sequence (Figure 3(c)), while
continuous or reversed motion leads to a belief of a moving

1Note that for any “no initial trajectory” condition, t = 2 is the
first step and t = 3 is the second step.
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perceived displacement between the moving object (with initial trajectories) and the flashed object for the four test conditions.
(e) Same as (d) but with no initial trajectory for the moving objects.

object sequence, resulting in the perceived lags (or no-lags)
along the corresponding directions.

Apparent Motion Perception
The explanation of the flash-lag effect relies on the second
level of the DPC network to minimize the prediction error
on the first-level transition dynamics (e.g. errors induced by
flashed stimuli or unpredictable motion reversal). That is,
new sensory information induces prediction errors that “post-
dictively” update the higher-level sequence representations of
the DPC network. One aspect of motion perception the pre-
vious results do not illustrate is the interplay between post-
diction and prediction. Hogendoorn et al. investigated this
effect in an apparent motion perception experiment. Partici-
pants were instructed to either report the detection of a visual
cue (short latency) or differentiate between two visual cues
(long latency) during apparent motion. These visual cues
could either be along the apparent motion trajectory or the
reversed trajectory. The authors found that upon reversing
the apparent motion trajectory, predictive effects dominated
perception at short latency (detection task, Figure 4b), with
the most interference (measured in terms of the participants’
reaction times) along the original trajectory. At longer la-
tency (differentiation task, Figure 4c), most interference was
along the reversed trajectories, indicating dominating post-
dictive effects.

We hypothesize that the prediction error minimization pro-
cess of DPC could explain this interplay between prediction
and postdiction, as illustrated by Figure 4(a). Figure 4a can
be seen as a depiction of the gradient-descent-based optimiza-
tion process of Equation 5 (and Figure 1c). Early percepts of
the model are dominated by the spatiotemporal prediction us-
ing the optimal estimates from the previous step (Figure 4a
left). When a motion reversal occurs, feedforward predic-
tion errors gradually correct the second-level states (Figure 4a
middle) until convergence (Figure 4a right). Therefore, late
percepts correspond to error-corrected spatiotemporal predic-
tions. Note that due to the discrete nature of the DPC model

(unit time steps), this process is considered to happen “at” one
time step (e.g. early versus late percept “at” t = 3 illustrated
in Figure 4a).

Results
To test this hypothesis, we used the same trained DPC net-
work and probed its percept of the moving object at the time
of reversal under the “with initial trajectory, reversal” condi-
tion (Figure 2b). At short latency (10% of steps into predic-
tion error correction, Figure 4a early percept), the perceived
locations for the moving object in most test sequences were
along the original trajectory, as denoted by positive displace-
ments compared to the final step before reversal (t = 2) (Fig-
ure 4d blue)). At longer latency (90%, Figure 4a late per-
cept), the moving object’s perceived locations were flipped
and along the reversed trajectory (negative displacements;
Figure 4d green). This is consistent with psychophysical
findings (Hogendoorn et al., 2008; Hogendoorn, 2022) that
when the motion of the object unexpectedly reversed, pre-
diction effects were observed at short latency (≈ 350 ms,
Figure 4b right panel, bright color denotes locations of in-
terference due to prediction) while postdiction effects were
observed at longer latency (≈ 620 ms, Figure 4c right panel,
bright color denotes locations of interference due to post-
diction). Figure 4e plots the moving object’s perceived lo-
cation in our model throughout the error correction process
(Figure 4a, all green percepts): the perceived location varies
smoothly from being along the original direction initially to
along the reversed direction at greater latencies. These results
make a testable prediction: if probed at an intermediate level
of latency (between 350 ms and 620 ms), the maximal inter-
ference should overlap with the object’s location at the time
of reversal (i.e., at the black dots in Figure 4b,c), as suggested
by Figure 3e.

Discussion
Previous normative models of postdiction in visual process-
ing often relate the effect to the concept of Bayesian smooth-
ing (or backward message passing) (Eagleman & Sejnowski,
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2000; Rao, Eagleman, & Sejnowski, 2001). We have shown
that a trained two-level DPC network with higher-level se-
quence representations also exhibits postdictive effects with-
out the need for smoothing. In the event of a temporal irreg-
ularity (e.g., an unexpected motion reversal), the higher-level
state in the DPC network is updated to reflect a new input
sequence, naturally implementing postdiction through online
hierarchical Bayesian filtering (Figure 1). Our flash-lag simu-
lation results are consistent with the Bayesian filtering model
from Khoei et al. (Khoei, Masson, & Perrinet, 2017) showing
that the flash-lag effect can be produced through an internal
model that explicitly represents object velocity. The higher-
level sequence representation in the DPC model supports an
implicit (and more generalized) representation of velocity and
reproduces the same internal dynamics of the “speed” esti-
mate at motion reversal (compare Figure 4e with Figure 6 in
Khoei et al. (2017)). Such a representation could explain re-
ports that the magnitude of the lag depends on the velocity of
the moving objects after the flash (Brenner & Smeets, 2000),
as the higher level of the DPC network infers a new dynamics
(velocity) estimate through prediction errors induced by the
velocity change, which in turn causes the moving object to

be perceived at a different distance from the flashed object. It
is worth noting that the trained DPC network learned to pre-
dict no motion (static sequence) for the flashed object even
though it was never trained on static object sequences and did
not assume a prior of zero speed (Khoei et al., 2017). This
emergent property was also seen in PredNet, which learned
to predict relatively little motion for a flashed bar stimulus
(Lotter et al., 2020).

In summary, our results demonstrate that the DPC model
exhibits predictive and postdictive effects similar to those re-
ported in visual motion processing in humans. DPC unifies
the temporal averaging and postdiction models of the flash-
lag effect (Hogendoorn, 2020) through temporally abstracted
representations of sequences. Directions worthy of further
study include (1) more rigorous formulations of the error-
correction “time” assumed by DPC and its relation to the
window length for temporal averaging (Krekelberg & Lappe,
1999), (2) relaxing the discrete time step assumptions of the
generative model, (3) deeper hierarchical versions of the DPC
model (Pöppel, 1997; Singhal & Srinivasan, 2021) and (4) the
integration of hierarchical actions (Gklezakos & Rao, 2022).
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Pöppel, E. (1997, May). A hierarchical model of tempo-
ral perception. Trends in Cognitive Sciences, 1(2), 56–61.
doi: 10.1016/S1364-6613(97)01008-5

Rao, R. P. N., Eagleman, D. M., & Sejnowski, T. J.
(2001, June). Optimal Smoothing in Visual Motion
Perception. Neural Computation, 13(6), 1243–1253.
doi: 10.1162/08997660152002843

Schneider, D. M., Sundararajan, J., & Mooney, R. (2018,
September). A cortical filter that learns to suppress the
acoustic consequences of movement. Nature, 561(7723),
391–395. doi: 10.1038/s41586-018-0520-5

Shimojo, S. (2014). Postdiction: its implications on visual
awareness, hindsight, and sense of agency. Frontiers in
Psychology, 5. doi: 10.3389/fpsyg.2014.00196

Singhal, I., & Srinivasan, N. (2021, December). Time
and time again: a multi-scale hierarchical frame-
work for time-consciousness and timing of cogni-
tion. Neuroscience of Consciousness, 2021(2), niab020.
doi: 10.1093/nc/niab020



Srivastava, N., Mansimov, E., & Salakhudinov, R. (2015,
June). Unsupervised Learning of Video Representations
using LSTMs. In Proceedings of the 32nd International
Conference on Machine Learning (pp. 843–852).

Xu, S., Jiang, W., Poo, M.-m., & Dan, Y. (2012, March).
Activity recall in a visual cortical ensemble. Nature Neu-
roscience, 15(3), 449–455. doi: 10.1038/nn.3036


